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ABSTRACT

An 1terative method is described for determining the reaction order and activation energy
from TG curves. The method makes use of equations to represent the temperature integrals
which are derived using numerical relationships 1n terms of E, T, and empirical constants.
Like the method of Reich and Stivala, the computation involves varying the value of » until
the appropriate linear relationship gives an intercept of zero. The slope of the line 1s YE¥,
where Y and X are constants in the equation
—log I=YEX(1/T)+log E¥+U
The method 1s tested using data obtained by means of a fourth order Runge-Kutta solution
of the rate law for bcth Arrhenius and non-Arrhenius cases.

INTRODUCTION

Most of the methods of analyzing TG data are based on the rate law
Z(1—a)" e E/RT (1
where a is the fraction of reaction completed, T is the temperature (K), B is

the heating rate, E is the activation energy, n is the order, and R is the molar
gas constant. Owing to the fact that the temperature integral

1= [T e E/aT g @
0
has no analytical closed from, approximations based on
1—(1 _a)l_" A (T —esrT
=— dT
1=n) B fo © 3)

abound [1-13]. Most of these methods make use of a truncated series
approximation of the integral. It has also been suggested that non-linear
heating rates be used to make the direct integration possible {14] and thus
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avoid errors introduced by approximations of the integral.
Recently, Reich and Stivala described a compact computer method that is
based on the approximate equation

1-(1—a)'™" _ART? (1 B 2RT) o~ 1/RT
(1—n) BE

E
in which the temperature integral 1s represented by a truncated series [2,15]
Since E>>2RT.(1 — 2RT/E) is approximately constant and the two point
form of eqn. (4) is

ln[ 1—(1—a,) ™" (:r,+,)2

(4)

='%(71"7’T,1ﬂ) )

1_(1_0"“)1—,: T,

Thus, when

.r:[n[ 1_(1_0‘.)1—" (T;+1)2
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1_(1 _al+l)

and

(-7
"I T,
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eqn. (5) represents a linear equation with a slope of — E/R and an intercept
of zero. Linear regression is then performed iteratively to find the value of »
resulting in an intercept of zero [16]. One of the deficiencies of this method is
that it is valid only for reactions obeying the rate law of egn. (1). For this
case, only the Arrhenius temperature integral [eqn. (2)] is approximated by a
truncated series and the method thus represents a special case. Further, the
truncated series and the approximation that (1 —2RT/FE) is a constant are
not equally valid for all values of E and 7. What is needed is a general
iterative method that is not limited to a rate law of the form of eqn. (1) but
one that will be valid for

da 4 E

— Mrm ,—E/RT
a5 —B(l—a) T" e (6)
where m=0, =1/2, =1,... This paper describes such a method where the

temperature integrals

T
I={ Tme &/RT QT
0

are approximated by numerical relationships [17,18].
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THEORY

If we start with the rate law

da_ A \ipme-£/RT
dT_,B(l a)y' T"e (6)
integration when n = 1 leads to
1—(1—a)'™" _ A4 T .
== [ Tme &/RTdT 7
T )

, "+, there will be two different
fractions of reaction, a, and a,, ,, respectively. Taking the ratio of these two
gives

For two different temperatures, 7, and T,

i 7 m o—E/RT
1-G-a) "] 0= _ FL T ©
[1—(—a.) ] 0~n) A (Tripme-emrar
B o
Simplifying and taking logarithms yields
T,
{~n [Tme &R aT
l—-(l*a,) g
log — | =log <% ©)
1~ (1 —a.) T e E/RTAT

0
which can be written as

[ 1—(1~a)""

L 1 - (1 .—ar-f-l)]*n

log

T, _ T
]'—:logj(; Tme E/RTdT—logj; Tme E/RT AT

(10)

We have recently shown that an accurate representation for the temperature
integral is afforded by empirical relationships in the form

~logI=N(1/T)+ D (11)
or, more precisely
—log I=YEX(1/T)+log E¥+ U (12)

where X, Y, W, and U are constants that have been tabulated for integrals
involving several values of m [17,18). Therefore, we can write

1 — 1— 1—n
k,g{ (1=a)™"
1 - (1 —.ax+l)

= —(YE*(1/T)) +log E¥ + U)

+(YEX¥(1/T,.,) +log E¥ + U) (13)

Since the last two terms of eqn. (12) are not functions of temperature, egn.
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(13) simplifies to

I—n
log[ 1—(1—a,) ,-
1—(1—a,,) "
and. therefore, values of only Y and X are required for the particular value
of m used. In the method developed in this work, the left-hand side of eqn.
(14) and (1/7,,,—1/T,) are subjected to linear regression starting with
n =0.1. The iterative variation of » is carried out until the intercept is closest
to zero as before [16.19]. Then

—Slope = YE*¥ (15)
or
log(—Slope) =log Y+ X log E (16)

from which E 1s readily determined using the tabulated values of ¥ and X
previously reported [18,20].

= YEX 1_L)
=ve'(77 "

I

TESTING THE METHOD

In order to test the method, values of a are needed at various tempera-
tures for known values of E, A /8, n, and m as they appear in eqn. (6). Since
the purpose was to determine if the iterative method would yield accurate
computed values of n and E, these parameters were given values of » = 1.000
and E =100 kJ mole™! to compute the (a, T) data. The values of « at
various temperatures were then computed by means of a fourth order
Runge-Kutta program using a TI-59 programmable calculator. This method
has been shown to yield extremely accurate results [21]. The («, T') data
resulting from numerical solution of eqn. (6) using values of £, A /8, and n
given above and using values of m=0, =1/2, =1, =3/2, and *2 are
shown in Table 1. To analyze these (a, T) data, a program was written to
perform the iterative method described by eqn. (14). Details of the program
and its use will be reported elsewhere. Because this program produces an
iterative evaluation of the intercept nearest zero for the correct n, the
procedure starts with » = 0.1 and » is incremented by 0.100C01 (so that » is
never exactly 1) until the intercept becomes negative. At this point, the value
of n is reduced to that o the previous iteration and incrementing by 0.01
occurs so that the “correct” n is determined to two decimal places [16,19]. It
is then necessary to evaluate E from the slope of this regression relationship
for the “correct” n. Thus, the values of ¥ and X used to determine E as a
function of 1/7 in eqn. (12) are required and these are shown in Table2 for
each value of m.
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TABLE2
Values of X and Y of egn. (12) for different values of m

m X Y
2 0.8313¢ 310.184
3/2 0.93943 297.632
1 0.94762 285404
1/2 0.95595 273.489
0 0.96443 261.884
—1/2 0.97309 250.578
-1 0.98187 239.611
—-3/2 0.99086 228919
-2 0.99993 218 593

RESULTS AND DISCUSSION

The (a, 7) data shown in Tablel were subjected to analysis by the
iterative method described 1n this work. Table 3 shows the results obtained
by means of these computations. These results show that the iterative
method produces an intercept that differs from zero by about 0.007 at most.
In each case, the value of n is within 0.01 of the *“correct” value of n = 1.00
used for the computation of the (a, T) data. Values of the intercept could be
found closer to zero by using increments for » smaller than 0.01. Although

TABLE3
Results computed using the iterative procedure when analyzing (a,7") data shown 1n Table 1

m Best® n Intercept —Slope —Corr. Coeff.  Calcd. E
(kJ mole™ ')

2° 1.00 —0.005711 11262.806 0.999874 197.94
2°¢ 1.01 0.001017 8720.059 0.996424 150.39
3/2¢ 099 0.007135 8695.624 0.999525 151.96
1 1.00 0.005144 5758.696 0.999612 99.67
1/2 0.99 0004124 5683.246 0.999818 99.99
0 0.99 0.006410 5689.732 0.999835 101 83
—-1/2 0.99 0.001860 5552.899 0.999504 101.01
—1 0.9 0.003079 5529.432 0.999927 102.31
—3/2 1.00 —0.003063 5293.001 1.000000 99.59
-2 1.00 0.000242 5232.320 1.600000 100.17

2 n=1.00 used to calculate the (a,7") data by the Runge-Kutta method.
b A value of £=200 kJ mole™! was used to calculate the (a,T) data.
© A value of £ =150 kJ mole™! was used to calculate the (a,T) data.



53

the results shown in Table3 have been obtained using data calculated with
n = 1.00, other values of n produce similar results.

The values of X and Y in eqn. (13) were obtained from linear regression of
—log I and 1/7T and then treating the slopes and intercepts by linear
regression [18,20]. Thus, there are slight errors in these empirically obtained
values of X and Y. Further, the values of the integrals themselves are not
exact {5,17,18,20]. Although the value of a at each value of T is accurately
determined by the Runge-Kutta method {21], the solutions are also inexact.
Finally, like the method of Reich and Stivala, the iterative method described
here makes use of linear regression to determine when the intercept is closest
to zero. Thus, the method described here makes use of a considerable
amount of numerical analysis and the results of other numerical methods.
While each of these procedures could be made slightly more accurate, the
increase in computation is hardly worth the effort. This is quite evident from
the results shown in Table3. The total process represents the numerical
integration of the temperature integrals, determining X and Y [18,20],
calculating the (a, T') data by a fourth order Runge—Kutta method [21], and
the present iterative method of analyzing the («, T) data. In fact, the results
shown in Table 3 give verification of the consistency of the calculations and
that the errors are indeed negligible in each process.

An interesting feature of the iterative computation is that the slope varies
considerably even for small differences in intercept as n is varied by units of
0.01. For example, in Table3 in the case where m =0, the trial value of
n = 0.99 produces an intercept of 0.006410 while the trial value of n=1.00
yields an intercept of —0.006942. Both of these values are close to zero and
the actual value of » indicated by the data is between 0.99 and 1.00.
However, the corresponding slopes are 5689.732 and 5461.433 when n = 0.99
and n = 1.00, respectively. The values of E calculated from these slopes are
101.832 and 97.60 kJ mole ™!, respectively. Thus, an error of about 2% results
in the calculated value of E in cither case. An intercept closer to zero can be
obtained but it requires that increments in » be smaller than 0.01. It is
readily apparent from this example that an error in E of perhaps =2% could
result simply because of the difference in the slopes produced by an iteration
step for n of 0.01. Obviously, the actual difference from zero that can be
tolerated in the intercept will depend on the values of E and n. However,
from this example, it is clear that determining E to a greater accuracy than
*=2% could require iterations smaller than 0.01 in #. While it is not difficult
to program the computation with an iteration of say 0.001, it is meaningless
from a phenomenological point of view to try to interpret a value of »
known to three decimal places instead of two. Furthermore, it is highly
unlikely that experimental data would ever justify such a procedure [22].
Finally, the example discussed here shows that a sophisticated data analysis
technique does not remove all the errors in calculating E. Reducing the
increment in n to values smaller than 0.01 can increase the accuracy of the
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computation, but it cannot remove experimental errors in the data which
render additional numerical analysis useless. It appears that data analysis
methods are now available that are far more precise in calculating kinetic
parameters than the experimental data are in providing input data.

For the case where m1 =0, the temperature integral is of the Arrhenius
type and the results are directly comparable with those obtained by the
method of Reich and Stivala [16]. We have previously given («, 7T) data for
such a case computed with E =100 kJ mole™!, 4 /8=3 X 10" min~', and
n=0.1/3.1/2.2/3,1,4/3, 5/3, and 2 [21]. These («, T') data have been
analyzed by the present method and the method of Reich and Stivala.
Table4 shows a comparison of the results obtained by the two iterative
methods. It is readily apparent that two methods give virtually identical
results for this case of Arrhenius behavior. The activation energies are, in
fact, identical within the errors involved in the variation in slope produced
by an iteration of 0.01 in n.

The value of the present method of analysis of TG data lies in the fact
that the values of the temperature integral have been accurately determined
by numerical integration, and the constants in eqn. (12) have been de-

TABLE 4

A comparison of results obtained using the present method and the method of Reich and
Stivala

n Intercept —Slope — Corr. Coeff. E
(kJ mole™ 1)

Actual Calcd.

Present method

0 0.01 —0.005761 5491.03 0.999831 98.15
1/3 0.33 —0 000024 5582.23 0.999966 99.83
1/2 0.50 —0.002764 5537.69 0.999936 99.01
2/3 0.66 0.003598 5641.95 0.999933 100.95
1 0.99 0006410 5689.72 0.999835 161.83
4/3 1.33 —0.002511 5540.69 0.999979 99.07
5/3 166 —0.002237 5540.56 0.999998 99.07
2 1.99 —0.001545 5551.36 0.999999 99.27
Reich and Stivala method

0 0.02 —0.000074 12055.26 0.999636 160.23
1/3 0.34 0.004982 12129.45 0.999755 100.85
1/2 0.50 0.010463 12211.07 0.999984 101.53
2/3 0.67 0.005684 12137.11 0.999822 100.91
1 1.00 0.007294 12155.54 0.999986 101.06
4/3 1.34 —0.003485 11981.94 0.999825 99.62
5/3 1.67 —0.003742 11946.07 0.999993 99.32

2 2.00 0.005388 12112.45 0.999986 100.71
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termined for various m values [18,20]. Thus, the accuracy of the expression
representing the temperature integral is assured. Second, the constants in
equations similar to eqgn. (12) have been tabulated for cases having tempera-
ture dependent frequency factors [18,20] making the same iterative method
applicable to these cases as well when the appropriate m value is known for
the reaction. Finally, the constants in eqn. (12) have been evaluated for a
large range of £ and 7 values. Therefore, the present method is accurate for
all temperatures and activation energies. It is also general in the sense that it
can be used for cases involving both temperature dependent and temperature
independent frequency factors.
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